Arithmetic questions

ANSWERS

ANSWERS			
1.) 687		Back to Basics	
		5.)	358
2.) 7,898	6.)	9,528	
3.) 1,498	7.)	3,632	
4.) 9,809	8.)	1,058	

Year 5 | Autumn term | Block 1 - Place value | Step 1
T-Roman numerals to 1,000
L-To know Roman numerals to 1000

Recall

1) Write the number 6 in Roman numerals. VI
2) Write the number 19 in Roman numerals. XIX
3) Write XCV in words. Ninety-five
4) Complete the part-whole model.

L-To know Roman numerals to 1000

Hook:

Roman numerals are based on seven symbols.

Key Questions:

What patterns can you see in the Roman number system?
What rules do we use when converting numbers to Roman numerals?
What letters are used in the Roman number system?
What does each letter represent?
What is the same and what is different about representing the number "five hundred and three" in the Roman number system and in our number system?

What letters are used in the Roman number system?

L-To know Roman numerals to 1000

Here is a date written in Roman numerals.

What day of the month is shown?
XXI means $10+10+1=21$
What month is shown? September
IX means 1 before $10 \quad 10-1=9$
What year is shown?
MMXV means $1,000+1,000+10+5=2,015$
$21^{\text {st }}$ September 2015

CM LXX IV

679 in Roman numerals is DC L XX IX

What mistake has the other person made?
CD means 100 before 500
$500-100=400$

L-To know Roman numerals to 1000

Let's Have a Go:

1 Write these numbers in Roman numerals.
(a) 27
(b) 427

2 It is believed that the Pantheon in Rome was constructed in the year 125.
Write the year 125 in Roman numerals.

Key Questions:
What rules do we
use when converting
numbers to Roman
numerals?
How do you know
what oxder to write
the letters when
using Roman
numerals?

What number is CLXVIII?

L-To know Roman numerals to 1000

Independent Practice:

1 Complete the tables.

10	20	30	40	50	60	70	80	90	100
X	XX	XXX	XL	L	LX	LXX	LXXX	XC	C

100	200	300	400	500	600	700	800	900	1,000
C	CC	CCC	CD	D	DC	DCC	DCCC	CM	M

(2)
Complete the table.

Numerals	Words	Roman numerals
52	fifty-two	LII
635	six hundred and thirty-five	DCXXXV
991	nine hundred and ninety-one	CMXCI
407	four hundred and seven	CDVII
839	eight hundred and thirty-nine	DCCCXXXIX

a) Amir
b) Dora has written VC directly from 'five hundred', i.e. $\mathrm{V}=5$ and $\mathrm{C}=100$ However, five hundred has its own Roman numeral, D
a) Who is correct?
b) What mistake has the other person made?

4
Complete the sequences.
a) V, X, \square , XX, \square XXX, \square
\square
b) C, CL, \square CCL, CCC, \square
\square
\square
c) $\mathrm{X}, \mathrm{XX}, \mathrm{XXX}$, \square
\square LX, \square
\square
d) III, \square , IX, \square XV, XVIII, \square
\square
a) $\mathrm{XV}, \mathrm{XXV}, \mathrm{XXXV}, \mathrm{XL}$
b) $\mathrm{CC}, \mathrm{CCCL}, \mathrm{CD}, \mathrm{CDL}$
c) $\mathrm{XL}, \mathrm{L}, \mathrm{LXX}, \mathrm{LXXX}$
d) $\mathrm{VI}, \mathrm{XII}, \mathrm{XXI}, \mathrm{XIV}$ XVIII,

L-To know Roman numerals to 1000
If you finish:

Solve

$$
\mathrm{CCCL}+\mathrm{CL}=
$$

Possible answers:

$$
\begin{aligned}
& C D+C \\
& M \div I I \\
& C+C C+C C \\
& C \times V
\end{aligned}
$$

Axithmetic questions

ANSWERS

Addition with Formal Written Methods		Back to Basics	
1.) 1,086	5.)	544	
2.) 8,709	6.)	21,635	
3.) 10,100	7.)	7,532	
4.) 9,011	8.)	1,995	

Year 5 | Autumn term | Block 1 - Place value | Step 2

T - Numbers to 10,000
L - To be able to read and represent numbers to 10,000.

1) What number is represented?

2) Draw counters to represent 2,362

3) What number is represented?

Thousands	Hundreds	Tens	Ones

$L-T_{0}$ be able to read and represent numbers to 10,000 . Hook

Key Questions:
What is the largest number you can make with these digit cards?

What is the smallest number you can make?

What is the smallest odd number you can make?

What is the largest even number you can make?
$L-T_{0}$ be able to read and represent numbers to 10,000 . Let's Learn: What numbers are shown?

$L-T_{0}$ be able to read and represent numbers to 10,000 .
Let's Learn:
Key Questions:
What does each digit represent?
How can we represent this number using concrete resources?

How can you represent this number using pictorial manipulatives?

The value of the \qquad in \qquad is \qquad

Th	H	T	O

$L-T_{0}$ be able to read and represent numbers to 10,000 . Let's Have a go:

1 Match the representations to the numbers.


```
4,005
```

\square
4,500

$$
4,050
$$

Show the number 2,536 in three different ways.

Key Questions:
How have the numbers been represented?

How can you find the odd one out? Explain your reasoning.

What number could the arrow be pointing to?
$\frac{L-T o ~ b e ~ a b l e ~ t o ~ r e a d ~ a n d ~ r e p r e s e n t ~ n u m b e r s ~ t o ~}{} 10,000$. Independent Practice:
(1) What numbers are represented?
a)

2. Adam says that the number 1,550 is shown below.

[^0]3. Draw counters to show each number.

5,063

Th	H	T	O

$L-T_{0}$ be able to read and represent numbers to 10,000 .

Independent Practice:

4 Complete the table.

Number	1 more	10 more	100 more	1,000 more
3,000				
7,213				
	4,511			
		1,291		
				2,899
			6,059	

Number	1 more	10 more	100 more	1,000 more
3,000	3,001	3,010	3,100	4,000
7,213	7,214	7,223	7,313	8,213
4,510	4,511	4,520	4,610	5,510
1,281	1,282	1,291	1,381	2,281
1,899	1,900	1,909	1,999	2,899
5,959	5,960	5,969	6,059	6,959

(5) Complete the part-whole models.
a)

c)

b)

d)

a) 600,7 in either order
b) 4,000
c) 200, 40, 5 in any order
d) 6,073
$L-T_{0}$ be able to read and represent numbers to 10,000 . If you finish:

Filip has made five numbers using the digits $1,2,3$ and 4

He is using a letter to represent each digit.

Here are his numbers.

AABCD
ACDCB
DCABA
CDADC
BDAAB

Use the clues to work out each number.

- The first number in the list is the greatest number.
- The digits in the fourth number add up to 12
- The third number is the smallest number.

Arithmetic questions

ANSWERS			
Addition with Formal Written Methods		Back to Basics	
11,208	5.)	178	
	6.)	41,846	
4.) 34,986	7.)	6,967	
		8.)	1,111

Year 5 | Autumn term | Block 1 - Place value | Step 3

T - Numbers to 100,000
L - To be able to read and represent numbers to 100,000 .

1) Write 5,402 in words.

Five thousand, four hundred and two
2) $3,485-3,000=485$
3) What is 10 more than 8,439 ? 8,449
4) $4,539+200=4,739$
$L-T_{0}$ be able to read and represent numbers to 100,000 .

Hook

Write as many different numbers as you can, using each word no more than once.

You do not need to use all the words each time.

Key Questions:
Mre Jones says that you must use all the words each time. Is he correct?

Mrs Higginson says that she can make the number 100,000. Is this true? How do you know?

How can you record your answers? Can you think of more than one way?

Thirty-six thousand, eight hundred and forty-seven

Key
Questions:
How many
counters
can each
place
value
column
contain?
What
happens
if there
are IO
counters
or more?

$L-T_{0}$ be able to read and represent numbers to 100,000 . Lets Have a go:

Complete the grid to show the number in different ways.


```
Key Questions:
What does each
digit represent?
How can we
represent this
number using
concrete
resources?
How can you
represent this
number using
pictorial
manipulatives?
```

The column before/after the \qquad column is the \qquad column.
$L-T_{0}$ a)

1
b)

Th	Th	H	T	0
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		$\bigcirc \bigcirc$
		\bigcirc		$\bigcirc \bigcirc$
				\bigcirc

a)

67,611	
67,000	611

b) | 50,470 | |
| :---: | :---: |
| 50,000 | 470 |

c)

78,319	
8,000	70,319

d)

93,406	
93,006	400

a) $42,000=40,000+2,000$
b) $17,250=10,000+7,000+200+50$
c) $20,455=20,000+400+50+5$
d) $70,090=60,000+10,000+90$
e) $50,641=40,000+10,000+300+341$

2 Complete the bar models.
number.
b)

50,000	470

d)

93,406	
	400

(3) Complete the number sentences.
a) $42,000=$ \square $+2,000$
b) $17,250=10,000+$ \square $+$ \square $+50$
c) $20,455=$ \square $+$ \square $+$ \square $+$ \square
d) $70,090=$ \square $+10,000+$ \square
e) $50,641=40,000+$ \square + \square $+341$

$L-T_{0}$ be able to read and represent numbers to 100,000 . If you finish:

Here is a number line.

What is the value of A ?
B is 100 less than A.
What is the value of B ?
C is 1,000 less than B.
Label C on the number line.

Arithmetic questions

ANSWERS			
Addition with Formal Written Methods		Back to Basics	
		11,355	5.)
		455	
2.)	76,764	6.)	48,996
3.)	39.5	7.)	9,044
4.) 63.5	8.)	2,923	

Year 5 | Autumn term | Block 1 - Place value | Step 4

T - Numbers to $1,000,000$
L - To be able to read and represent numbers to $1,000,000$.

1) Draw counters to represent $31, \underline{0} 43$

2) Complete the number sentence.
$42,305=40,000+300+2,000+5$
3) What is the value of the digit 2 in 52,301 ?

Two thousand / 2,000

$L-T_{0}$ be able to read and represent numbers to 1000,000 .

Hook

Here are two ways of partitioning one million into multiples of 100,000

$1,000,000$	
600,000	400,000

How many other ways can you find to partition one million into multiples of 100,000 ?

Show your answers as bar models and part-whole models.
Key Questions:
If one million is the
whole what could the
parts be?
How could place value
counters help you
partition one million?
Mr Kenny says that he
can use his number
bonds to IO to support
his working out. Is this
true? How does this
help?

Key Questions: If one million is the whole what could the parts be?

How could place value counters help you
partition one million?
Mr Kenny says that he
can use his number bonds to 10 to support his working out. Is this help?

To be able to read and represent numbers to $1,000,000$. Let's Learn:

What number is shown in the place value chart?

Thousands				Ones		
H	T	O	H	T	O	
O		O	O	O		
O		O	O			
		O				

To be able to read and represent numbers to $1,000,000$. Let's Learn:

What number is shown in the place value chart?

406,320					
400,000	0	6,000	300	20	0
Thousands			Ones		
H	T	O	H	T	O
O		O	O	O	
		O			
		O			
4	0	6	3	2	0

To be able to read and represent numbers to $1,000,000$. Let's Learn:

What number is shown in the place value chart?

$$
406,320
$$

What will the number be if you add three counters to the ten-thousands column?

$$
436,320
$$

To be able to read and represent numbers to $1,000,000$. Let's Learn:

The number is 43,210

HTh	TTh	Th	H	T	O
100000					

What mistake has Tiny made?

Tiny did not include 0 as a place holder in the ten thousand column.

To be able to read and represent numbers to $1,000,000$. Let's Have a go:

What number is shown in each place value chart?
Give your answers in numerals.

HRh	FTh	Th	H	T	O
		0	0	0	0
				0	

Thousands				Ones		
H	T	O	H	T	O	
					0	

What is the same and what is different about these place value charts?
Key Questions:
How have the
numbers been
represented?
What other
models could
you use?

The value of the \qquad in \qquad is \qquad

(1)

What numbers are represented in the place value charts?
a)

b)

c)

2
Make these numbers in a place value chart.
a) 104,379
b) 804,363
c) 92,715
d) 690,018

What is the same about all the numbers you have made?
a)
a) 1 counter in the hundred-thousands column, 4 counters in the thousands colum counters in the hundreds column, 7 counters in the tens column and 9 counters the ones column
b) 8 counters in the hundred-thousands column, 4 counters in the thousands colum counters in the hundreds column, 6 counters in the tens column and 3 counters the ones column
c) 9 counters in the ten-thousands column, 2 counters in the thousands column, 7 counters in the hundreds column, 1 counter in the tens column and 5 counters ir ones column
d) 6 counters in the hundred-thousands column, 9 counters in the ten-thousands column, 1 counter in the tens column and 8 counters in the ones column multiple possible answers, e.g.:
They all have a digit total of 24
They are all less than a million.
They are all greater than 90,000

295
2,095

200,000
b) three numbers with 2 in the hundreds column, e.g. 1,250 10,299 999,299
a) 300 (3 hundreds)
b) 300 (3 hundreds)
c) 3 (3 ones)
d) 300,000 (3 hundred-thousands)
e) 30,000 (3 ten-thousands)
f) 3,000 (3 thousands)

To be able to read and represent numbers to $1,000,000$. If you finish:
a) Circle all the numbers that have 2 in the hundreds column.

$$
295 \quad 2,095 \quad 19,216 \quad 200,000
$$

b) Write three more numbers that have 2 in the hundreds column. Each number should have a different number of digits.
a) 295 2005 19,216 200,000
b) three numbers with 2 in the hundreds column, e.g. 1,250 10,299 999,299

Dora is thinking of a 6 -digit number.

- It is an odd number.
- The smallest digit has the greatest value.
- The greatest digit has the smallest value.
- The first and last digits add up to 10
- The first three digits also add up to 10
- The last three digits add up to 20
- The two middle digits are the same.

What ciuld Rnra'e number be?
Use thi
$\begin{aligned} & \text { possible solutions: } \\ & 127,749 \quad \text { rkings. }\end{aligned}$
136,659
145,569
154,479
163,389

Axithmetic questions

| ANSWERS | | |
| :--- | :--- | :--- | :--- |
| Addition with Formal Written Methods | | Back to Basics |
| 1.) 10,996 | 5.) | 434 |
| 2.) 62.3 | 6.) | 17,442 |
| 3.) 77.56 | 7.) | 14,220 |
| 4.) 22.47 | 8.) | 3,983 |

Year 5 | Autumn term | Block 1 - Place value | Step 5

T-Read and write numbers to $1,000,000$
L-To be able to read and write numbers to 1,000,000.

1) Draw counters to represent 131,002

2) How many thousands are there in 68,282 ?

Sixty-eight / 68
3) What is the value of the digit 3 in $452, \underline{3} 92$?

3 hundred / 300
4) Write one million in numerals. $1,000,000$
$L-T_{0}$ be able to read and write numbers to $1,000,000$.

Hook

Use the digit cards and the place value chart to make different 6-digit numbers.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 4 & 1 & 9 & 0 & 0 \\
\hline
\end{array}
$$

HTh	TTh	Th	H	T	O

Key Questions:
How many
alternative ways
can you record your answer?

Mr Latham says
that he can write
his answer using words. What would this look like?

Let's Learn: Write the number represented in numerals. 125, 33B4

Write the number represented in words.
One hundred and twenty-five thousand and thirty-four.

Let's Learn: Complete the part-whole model and write the number in words.

 threawritedtise auniberpty-four.
$L-T o$ be able to read and write numbers to $1,000,000$
Scott is using a part-whole model to help write the number 145,362 in words.

One hundred and forty-five thousand, three hundred and sixty-two.
What mistake has Scott made?

$L-T o$ be able to read and write numbers to $1,000,000$.

Let's Have a go:
(1) 56,402 is shown in the place value chart.

Thousands				Ones		
H	T	O	H	T	0	

Write the number 56,402 in words.
How does the place value chart help you?
2. A number is made up of 2 ten-thousands, 5 । 7 ones.

Show the number on a place value chart.
Write the number in words and numerals.

Independent Pxactice:

a) 124,361
b) 405,984
c) 450,904

1) What number is represented?

352,146

three hundred and fifty-two thousand, one hundred and forty-six

Write your answer in numerals. Write your answer in words.

3 Write the numbers in numerals.
a) one hundred and twenty-four thousand, three hundred and sixty-one
b) four hundred and five thousand, nine hundred and eighty-four
c) four hundred and fifty thousand, nine hundred and four

4
a) Eva has written the number 231,405 in words.

a) The part-whole model shows the number before the comma and the number after the comma when the number is written in words. The number has been partitioned into the thousands part and the ones part which helps to write the number.
a) four hundred and thirty-six thousand, six hundred and thirty-four
b) four hundred and sixty-three thousand, six hundred and forty-three
c) two hundred and seven thousand, eight hundred and forty-five

$L-T o$ be able to read and write numbers to $1,000,000$.

If you finish:

Find all the possible numbers Tiny could be thinking of.

Give your answers in words and numerals.

Investigate with different digit sums.

What do you notice?

200,000
two hundred
thousand
110,000
one hundred and
ten thousand
101,000
one hundred and
one thousand
100,100
one hundred
thousand,
one hundred
100,010
one hundred
thousand and ten
100,001
one hundred thousand and one

Axithmetic questions

ANSWERS

Subtraction with Formal Written Methods		Back to Basics	
1.) 326	5.)	855	
2.) 1,240	6.)	9,894	
3.) 283	7.)	8,064	
4.) 2,603	8.)	3,239	

Year 5 | Autumn term | Block 1 - Place value | Step 6

T- Powers of 10
$L-T_{0}$ be able to explore the relationship between numbers in different columns.

1) Represent the number 513 on the chart.

HTh	TTh	Th	H	T	O
					O

2) Represent the number 5,130 on the chart.

HTh	TTh	Th	H	T	0

3) Represent the number 51,300 on the chart.

HTh	TTh	Th	H	T	0

4) What do you notice? Same number of counters Moved 1 column to the left

Hook:

Whitney

What could Whitney's question be?

Mr Kenny says that he thinks Whitney has multiplied 620 by 1000. Is he correct? How do you know?

Mr Smith says he used a Gattegno chart to help him work out a solution. How could this help? What patterns can you see in the Gattegno chart? If you move a digit one place to the left in a place value chart, how many times greater is the value of the digit?

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

How many ones are there in 10 ?

How many tens are there in 100 ?

There are 10 tens in 1 hundred.

L-To be able to explore the relationship between numbers in different columns.
Let's Learn: How many hundreds are there in 1,000?

There are 10 ones in 1 ten.
There are 10 tens in 1 hundred.
There are 10 hundreds in 1 thousand.

HTh	TTh	Th	H	T	O

Hthutnolanyotematioeisands are there in 1 hundred-thousand?
$L-T_{0}$ be able to explore the relationship between numbers in different columns.
There are 10 ones in 1 ten.
There are 10 tens in 1 hundred.
There are 10 hundreds in 1 thousand.

How many tens are there in 200? 20

There are 10 ones in 1 ten.
There are 10 tens in 1 hundred.
There are 10 hundreds in 1 thousand.

How many hundreds are there in 2,000 ? 20

10 hundreds

There are 10 ones in 1 ten.
There are 10 tens in 1 hundred.
There are 10 hundreds in 1 thousand.

How many hundreds are there in 5,000 ?

There are 10 hundreds in 1,000 and 5 thousands in 5,000
This means there are $\underline{50}$ hundreds in 5,000

There are 10 ones in 1 ten.
There are 10 tens in 1 hundred.
There are 10 hundreds in 1 thousand.

How many hundreds are there in 5,200 ? 52

L-To be able to explore the relationship between numbers in different columns.. Let's Learn:

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

What number is 10 times the size of 3 ?

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

What number is 10 times the size of 6 ?

What do you notice?

If the counter moves up 1 row then the number is 10 times the size.

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

What number is 100 times the size of 6 ?

What do you notice?

If the counter moves up 2 rows then the number is 100 times the size.

L-To be able to explore the relationship between numbers in different columns. Let's Learn:

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

To find the number 1,000 times the size, the counter will move 3 rows up

\qquad -
(2) What number is shown on the Gattegno chart?

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

Use the chart to find the number 100 times the size of the number shown.

Use the chart to make the number one-tenth the size of the number shown.

There are \qquad hundreds in 1,000 and \qquad thousands in \qquad .
This means there are \qquad hundreds in \qquad .

$L-T_{0}$ be able to explore the relationship between numbers in different columns.

The children choose one of these number cards each.
29,000 \square 2,900
290,000

Tommy 2,900
Whitney 290,000
Annie 290
Dexter 29,000

Which number does each child have?

Arithmetic questions

| ANSWERS | | |
| :--- | :--- | :--- | :--- |
| Subtraction with Formal Written Methods | | Back to Basics |
| 1.) 494 | 5.) | 732 |
| 2.) 291 | 6.) | 30,684 |
| 3.) 3,880 | 7.) | 13,163 |
| 4.) 1,901 | 8.) | 2,199 |

Year 5 | Autumn term | Block 1 - Place value | Step 7

$$
\begin{aligned}
& T-10 / 100 / 1,000 / 10,000 / 100,000 \text { more or less } \\
& L-T o \text { be able to make and } \\
& \text { identify patterns in numbers. }
\end{aligned}
$$

1) What number is represented? 312,368

Thousands				Ones		
H	T	O	H	T	O	
					0	
3			2			0

2) What number is represented? 174,308

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

$L-T_{0}$ be able to make and identify patterns in numbers.

Hook

Arrange the 5 numbers to make a number pattern.

```
Key Questions:
How can you arrange these numbers?
Do they make a pattern?
Can you spot a pattexn?
What numbex comes next?
How can you be sure?
```

$L-T_{0}$ be able to make and identify patterns in numbers. Let's Learn:

Each number is 3 thousand more than the number before it. What number comes after 37160 in this number pattern?

What is the next number in this number pattern?
Add 40 thousand to get the next number.
Each number is 4 ten thousands more than the number before it.

Key Questions:
What other patterns can you make?
Can you come up with a rule for the patterns?

Complete the counting sequence.

432	442	452	462	472	482	492	502

3,432	3,442	3,452	3,462	3,472	3,482	3,492	3,502

What do you notice?

Complete the counting sequence.

2,562	2,462	2,362	2,262	2,162	2,062	2,962	2,862

Do you agree with Tiny?

Complete the counting sequence.

2,562	2,462	2,362	2,262	2,162	2,062	1,962	1,862

$$
6,135 \quad 7,135 \quad 8,135 \quad 9,135 \quad 10,135
$$

What's stayed the same?
The hundreds, tens and ones digits

What's changed?

The thousands digits
It is 1 thousand greater each time

$$
1, \underline{618} \quad \underline{1,718} \quad \underline{1,818} \quad 1,918 \quad \underline{2,018}
$$

What's stayed the same?

	300	$300 \div 3=100$	
What's chanjed?			
1,618	1,718	1,818	1,918

This sequence is counting up in 10,000 s .

To be able to make and identify patterns in numbers.

Let's Have a go:
(1) 20,417 is shown in the place value chart.

Th	Th	H	T	O
		O		0

What is 100 more than 20,417 ?
What is 10 less than 20,417?
What is 1,000 less than 20,417?
(2) Complete the number tracks.

663	673		693		713	

7,200		7,000			

Key Questions:
How can you use a place value chart to find 10/100/1,000 ... more/less than a given number?

How can you use a Gattegno chart to find 10/100/1,000 ...
more/less than a given number?

How many digits of the number will change if $y \sigma \mu$ add 10/100/1,000 ... to the given number?

The numbers are increasing by 10
b) $159 \quad 129 \quad 119$

The numbers are decreasing by 10
c) $575 \quad 775 \quad 975 \quad 1,075$

The numbers are increasing by 100
1 and describe what is happening.
a)

7	17		37	47		67

b)

169		149	139			109

c)

475		675		875		

Number	10 more	100 more	1,000 more	10,000 more	100,000 more
25	35	125	1,025	10,025	100,025
250	260	350	1,250	10,250	100,250
2,500	2,510	2,600	3,500	12,500	102,500
25,000	25,010	25,100	26,000	35,000	125,000
250,000	250,010	250,100	251,000	260,000	350,000

(4) Correct the mistake in each number sequence.

Talk about it with a partner.

To be able to make and identify patterns in numbers. If you finish:

Jack is correct.
Whitney is incorrect. All her numbers will end in 04

Teddy is incorrect. All his numbers will end in 13

Axithmetic questions

ANSWERS

Subtraction with Formal Written Methods		Back to Basics
		5.)
1.) 2,131		
2.) 3,693	6.)	45,017
3.) 4,919	7.)	7,374
4.) 1,680	8.) 2,211	

Year 5 | Autumn term | Block 1 - Place value | Step 8

T-Partition numbers to $1,000,000$
$L-T_{0}$ be able to partition numbers to a million.

1) What number is represented? 3,524

Th	H	T	0
		\bigcirc	

2) How many tens are there in 100? 10

How many tens are there in 200? 20
How many tens are there in 400 ?
How many tens are there in 420? 42
How many hundreds are there in 4,200 ?
L-To be able to partition numbers to a million. Hook:

Key Questions:
Mrs Jennings says the
total value of the counters
is 265,312
What place value counters could be hidden?

Mr Kenny says that there is a hundred thousand
counter under the splat. Is he correct? How do you
know?
Can you find more than one solution?

L-To be able to partition numbers to a million.

Let's Learn:

3,524 is equal to 3 thousands, 5
hundreds, 2 tens and 4 ones.

$\underline{21,067}$ is equal to $\underline{2}$ ten-thousands, 1 thousand, 0 hundreds, $\underline{6}$ tens and 7 ones.
$21,067=\underline{20,000}+\underline{1,000}+\underline{60}+\underline{7}$

620,913

HTh	TTh	Th	H	T	O

What is the value of the first digit? 600,000 What is the value the digit 9? 900 What is the value of the third digit? 0

Complete the part-whole model.
 No, Tiny has not considered the place value of each digit.

$\underline{L-T o}$ be able to partition numbers to a million.

Let's Have a Go:
(1)

Partition the numbers into thousands, hundreds, tens and ones.

- 6,789 = \qquad $+$ \qquad $+$ \qquad $+$ \qquad
- $4,813=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad

2) Complete the number sentences.
$>\quad=20,000+7,000+800+40+3$

- $560,830=$ \qquad
$+60,000+$ \qquad $+30$

What number is being represented?

How can place salue cards be used to help partition a number?

If you have 10 hundreds/thousands /ten-thousands, what can these be exchanged for?

$\underline{L-T o}$ be able to partition numbers to a million

Independent Practice:

1) Complete the number sentence to partition the number.

2) Complete the number sentence to partition the number.

Partition each number into its parts.
The first one has been done for you.
a) $32,607=30,000+2,000+600+7$
a) $32,607=30,000+2,000+600+7$
b) $2,915=2,000+900+10+5$
c) $30,316=30,000+300+10+6$
d) $438,390=400,000+30,000+8,000+300+90$
e) $769,688=700,000+60,000+9,000+600+80+8$ \qquad
e) $769,688=$ \qquad
(4) Complete the number sentences.
a) $125,684=100,000+20,000+4,000+\square+84$
a) $125,684=100,000+20,000+4,000+1,600+84$ \square
b) multiple possible answers, e.g. $125,684=115,000+10,000+600+84$
c) multiple possible answers, e.g.
$597,203=203+400,000+190,000+7,000$

$\underline{L-T o}$ be able to partition numbers to a million.

If you finish:

Esther is partitioning a number written in Roman numerals.

$$
M M D X L=M+M+D+X+X+X+X
$$

Is Esther correct?

Find some other ways of partitioning the number using Roman numerals.

Esther is correct.

```
multiple possible
answers, e.g.
MM + CD + C + XL
M+D+D+D+XL
```


Axithmetic questions

ANSWERS

Subtraction with Formal Written Methods		Back to Basics	
1.)	1,331	5.)	1,443
2.)	20,795	6.)	16,494
3.) 1548.0			
4.)	16.1	8.)	11,953
		2,212	

Year 5 | Autumn term | Block 1 - Place value | Step 9
T- Number line to $1,000,000$
$L-T_{o}$ be able to locate numbers on a number line.

1) Complete the number tracks.

100	200	300	400	500	600	700	800

3,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000

44,000	44,200	44,400	44,600	44,800	45,000	45,200	45,400

2) $100,000 \div 10=10,000$
3) $10,000 \div 2=5,000$
4) $10,000 \div 4=2,500$

Hook:

The midpoint between 400,000 and 500,000 is 400,500

Do you agree with this statement? Explain your reason.

What are the values at the start and the end of the number line?

Mr Kenny says it is important to work out how many intervals there are. How does this help?

Mr Smith says that he thinks the midway point is 450,000. Is he correct? Why/why not?

L-To be able to locate numbers on a number line.
Let's Learn:

What is an interval?
There are 10 intervals on this number line.

The difference in value between the start and end point is \qquad There are 10 intervals.

$$
100 \div 10=10
$$

The number line is counting up in 10s

The difference in value between the start and end point is 1,000
There are 10 intervals.

$$
1,000 \div 10=100
$$

The number line is counting up in 100 s

The difference in value between the start and end point is 100,000
There are $\underline{10}$ intervals. $\quad 100,000 \div 10=10,000$
The number line is counting up in 10,000 s

The difference in value between the start and end point is $1,000,000$

$$
1,000,000 \div 10=100,000
$$

There are 10 intervals.
The number line is counting up in 100,000 s

Let's Learn: What number is the arrow pointing to?

The difference in value between the start and end point is 10,000
There are 10 intervals.

$$
10,000 \div 10=1,000
$$

The number line is counting up in 1,000 s

Let's Learn: What number is the arrow pointing to?

The midpoint between 0 and 1,000 is 500

$$
1,000 \div 2=500
$$

The midpoint between 6,000 and 7,000 is 6,500

Let's Have a Go:

What numbers are the arrows pointing to?

What is the same about the number lines? What is different?

Label the start and end points on the number line.

Draw arrows on the number line to show:

- the exact position of 60,000
- the approximate position of 35,000
- the approximate position of 82,369

$L-T o$ be able to locate numbers on a number line.

Independent Practice:

(1) What numbers are the arrows pointing to?

2 What numbers are the arrows pointing to?
a)

b)

1	a)	30,000	50,000
	300,000		
	a)	30,000	65,000
	b)	100,000	950,000

\underline{L}-To be able to locate numbers on a number line.
If you finish:
Estimate the number that each arrow is pointing to.
a)

$C=\square$
b)

\square
\square
\square
a) $\mathrm{A}=35,000$
B $=89,000$
$C=5,000$
b) $D=400,000$
$E=900,000$

$$
F=150,000
$$

Axithmetic questions

ANSWERS

ANSWERS			
Multiplication Written Methods			
1.)	678	5.)	114
2.)	4,335	6.)	1,635
3.) 11,820	7.)	9,417	
4.) 19,425	8.)	4,345	

Year 5 | Autumn term | Block 1 - Place value | Step 10

T- Compare and oxder numbers to 100,000

L-To be able to compare and oxder numbers using place value

1) $300+4+10,000=10,304$
2) $\mathrm{C}=100$

$$
\begin{aligned}
& I=1 \\
& X=10 \\
& V=5
\end{aligned}
$$

3) What does ascending mean? Increasing in size
4) What does descending mean?Decreasing in size

L-To be able to compare numbers using place value.

Hook

The class is playing a number game.

Each student draws a digit card from his or her stack and decides its place value. These cannot be changed. Students continue to draw cards until each player has a 6-digit number. The player with the greater number wins.

Key Questions:
What is the easiest way to compare the numbers?

Mr Kenny says that it is easiest to compare numbers by looking at the ones. Is this true?

Can you come up with a rule that helps you compare numbers?

What does greater than mean?

What does less than mean?

Io be able to compare numbers using place value.

Let's Learn:

(1) Compare $853,5,2,7$ and $6,1,45523$.

(2) Compare 763502 and 7655420

835127 is greater than 614523.
Key Questions:
In order to compare numbers, what do we need to know?
Why do the children compare the first digit only?
Will this work every time?
What do we need to do to if the columns have the same digits?

To be able to compare numbers using place value. Let's Learn:

(0)	TTh	Th	H	T	0
Dexter's number	$\bigcirc 0$	$\bigcirc \bigcirc$		\bigcirc	$\bigcirc \bigcirc$
24,013		\bigcirc			\bigcirc
	2	4	0	1	3

$24,013<40,101$

TTh	Th	H	T	\mathbf{O}
\bigcirc		\bigcirc		\bigcirc
0				
4	0	1	0	1

Dexter's number is greater! He has used 10 counters whereas Dora has only used 6

Io be able to compare numbers using place value. Let's Learn:

Io be able to compare numbers using place value. Let's Learn:
A) 7,996
B) 21,253

$$
A<B
$$

Io be able to compare numbers using place value. Let's Learn:

Order the numbers, starting with the smallest.

$$
99 \quad \underline{513} \quad \underline{5,109} \quad \underline{5,122} \quad 11,022
$$

To be able to compare numbers using place value.

Let's Have a go:

(1) Who made a greater number?
is greater than
is less than

Which number is already greater than 800000 ?

Key Questions:
Which number is already greater than 800 000?

Is a 6 digit number always greater than a five digit number?

3 Some ink spilt on the sheets of paper. All the numbers are 6-digit numbers. Is it possible to tell which number is greater?

Io be able to compare numbers using place value.
 Independent Practice:

(1)

Rosie and Jack have each made a number.

Rosie's number

Jack's number

a) Who has made the greater number? How do you know?
b) Draw counters on a place value chart to show a number that is greater than both Rosie's and Jack's.

2 Use 5 counters to make four different numbers on a place value cha a) Write your numbers.
b) Write your numbers in order from smallest to greatest.
(3)

Circle the greater number in each pair.
a) 10,000
1,000
d) 5,400
4,500
b) $2,300 \quad 3,200$
e) 56,000
6,500
C) 34,975
9,345
f) 9,999
99,999
4.

Write the numbers in order starting with the smallest.
a) 9,000
908
972
99
90,000
b) 700
72
576
907
27

Question	Answer
1	a) Jack They have the same number of ten thousands, but Jack has more thousands. b) Any number that is greater than 85,428
2	a) four numbers each with digit total of 5 b) numbers from part a) written in order from smallest to greatest
3	a) 10,000 b) 3,200 c) 34,975 d) 5,400 e) 56,000 f) 99,999
4	a) $99 \quad 908 \quad 9729,000 \quad 90,000$ b) $27 \quad 72 \quad 576 \quad 700 \quad 907$

To be able to compare numbers using place value. If you finish:

Dependent on numbers chosen. e.g. 4, 9, 1, 3, 2

Place the digits cards 0 to 9 face down and select five of them.

Make the greatest number possible and the smallest number possible.

How do you know which is the greatest or smallest?

Smallest: 12,349
Greatest: 94,321
I know this is the greatest number because the digit cards with the larger numbers are in the place value columns with the greater values.

Axithmetic questions

ANSWERS			
1.) 6,144		Back to Basics	
		5.)	744
2.) 19,788	6.)	26,180	
3.) 39,582	7.)	2,065	
4.) 6,462	8.)	981	

Year 5 | Autumn term | Block 1 - Place value | Step 11

T- Compare and oxder numbers to 1,000,000
L-To be able to compare numbers using place value.

1) What digit is in the ten-thousands place in 703,562 ?
2) $6,834 \quad \underline{7,034} \quad \underline{7,134}$
3) Match the symbols to the correct meanings.

To be able to compare numbers using place value.

Hook

Can you use all 16 digit cards to make three numbers greater than 10000 but less than 1000000 ?

Arrange them from the smallest to the greatest.

Key Questions:
Mr Kenny says the best way to solve this problem is to make sure the numbers are greater than 100 000. Is this possible?

What are the three largest numbers that are possible with the given digits?

What are the three smallest numbers that are possible with the given digits?

To be able to compare numbers using place value. Let's Learn:
(1) makes the following numbers.

What rule can you use to help
remember the symbol's
direction?
What does the word ascending mean?

What does the word descending mean?

$23665<23670<182300$

- makes the following numbers.

6	2	0	1	3	3	620133
2	6	0	8	7	5	260875

Does this work?
The greatest number that can be made using the remaining cards is:

It is less than 10000

To be able to compare numbers using place value.

Let's Learn:

Complete the number sentences using the correct inequality sign.

One hundred thousand and one 100,001

07,489
(<) 74, 890

477,380

To be able to compare numbers using place value.
Let's Learn: Use the number line to help write the numbers in descending order.

The difference in value between the start and

45,109 45,006
There are 10 intervals.
The number line is counting up in 100 s

To be able to compare numbers using place value.

Let's Learn:

Order the numbers, starting with the greatest.


```
Key Questions:
What is the most efficient
strategy you can use?
```

To be able to compare numbers using place value.

Maths Activity:

```
Key Questions:
Can we use 19 cards
to make three
numbers?
What if we used
fewer than 15 cards?
What symbol can you
use to compare?
```

Work in pairs.
Follow the instructions to make numbers using digit cards. The numbers you make must be greater than 10000 but less than 1000000 .
(a) Use 15 cards to make 3 numbers. Arrange them from the smallest to the greatest.
(b) Use 16 cards to make 3 numbers.

Arrange them from the smallest to the greatest.
(c) Use 17 cards to make 3 numbers.

Arrange them from the smallest to the greatest.
(d) Use 18 cards to make 3 numbers. Arrange them from the smallest to the greatest.

Can we use
19 cards to make the 3 numbers?

What if we use fewer than 15 cards?

To be able to compare numbers using place value.

 If you finish:Use the digit cards to make three different 5-digit numbers that match the clues.

- The digit in the ones column and the digit in the hundreds column have a difference of 2
- The digit in the hundreds column and the digit in the ten-thousands
multiple possible answers, e.g.

18,325
47,260
56,341 column have a difference of 2

- The sum of all the digits in the number is 19

Write your numbers in ascending order.

Axithmetic questions

ANSWERS

Multiplication Written Methods		Back to Basics	
1.) 33,348	5.) 2,881		
2.) 17,592	6.)	30,779	
3.) 46,265	7.) 11,396		
4.) 24,704	8.) 4,736		

Year 5 | Autumn term | Block 1 - Place value | Step 12
T- Round to the nearest 10,100 or 1,000
L-To round to the nearest 10,100 or 1,000

1) Label the number line.

2) Estimate the position of 1,522 on the number line.

3) 4,000

4,100
4,200
4,300

L- To Round to the nearest 10,100 or $1,000$.

Hook

How can you sort the eggs?

Key Questions:
What do the numbers have in common?

Could you place the numbers on a number line? How does that help?

My friend says that he would put 495 in the 500 nest as 495 is closest to 500. What does he mean by that?

What is this process called?
When is \square numbers useful?

How else could you sort the eggs?

Let's Learn: Round 62 to the nearest 10

62
The previous multiple of 10 is 60
The next multiple of 10 is 70
62 is closer to $\quad 60$ than $\quad 70$
62 rounded to the nearest 10 is 60

Let's Learn: Round 62 to the nearest 100

The previous multiple of 100 is 0
The next multiple of 100 is 100
$\underline{62}$ is closer to 100 than \qquad
62 rounded to the nearest 100 is 100

Let's Learn: Round 2,755 to the nearest 10 2,760

The previous multiple of 10 is 2,750
The next multiple of 10 is 2,760
$\underline{2,755}$ rounded to the nearest 10 is 2,760

Let's Learn: Round 2,755 to the nearest 10 2,760

Round 2,755 to the nearest $100 \quad$ 2,800

Let's Learn: Round 2,755 to the nearest 1,000 3,000

The previous multiple of 1,000 is 2,000
The next multiple of 1,000 is 3,000
$\underline{2,755}$ is closer to 3,000 than 2,000
$\underline{2,755}$ rounded to the nearest 1,000 is 3,000

Let's Learn: Round 502 to the nearest 1,000 1,000

Let's Learn:

$$
\begin{aligned}
& \text { Key Questions: } \\
& \text { Which place value column do we } \\
& \text { need to look at when we round to } \\
& \text { the nearest } 100 \text { ? } \\
& \text { My friend says that it is always } \\
& \text { besit to round to the nearest } 10 \text {. Do } \\
& \text { you agree? } \\
& \text { Can you explain why? } \\
& \text { Do we get the same answer when } \\
& \text { rounding a number to the nearest } 10 \\
& \text { and } 100 \text { ? }
\end{aligned}
$$

L- To Round to the nearest 10,100 or 1,000 .

Let's have a go:

a) Are these numbers closer to 120 or 130 ?

Use the number line to help you complete the sentences.

125 is the same distance from \square as it is from \square
b) Round each number to the nearest 10
121
124
127 125

Key Questions: What is the same what is different about rounding to the nearest 10 and nearest 100?

Why do numbers up to 49 round down to the nearest 100 ?

Can the answer be 0 when rounding?

L- To Round to the nearest 10,100 or 1,000 .

Independent Practice:

Here is a number line.

a) Which numbers round to 40 ?
b) Which numbers round to 50 ?

Round each number to the nearest 10
a) 41
b) 19
c) 25
d) 79
e) 9
f) 4
g) 33
h) 71
i) 99

Complete the table.

Number	624	371	289	750	38
Rounded to the nearest 10					
Rounded to the nearest 100					

There are 400 children in a school, to the nearest 100
What is the least number of children in the school?
What is the greatest number of children in the school?

If you finish:

Using the digit cards 0 to 9 , can you make whole numbers that fit the following rules? You can only use each digit once.

1. When rounded to the nearest 10,1 round to 20
2. When rounded to the nearest $10, \mathrm{I}$ round to 10
3. When rounded to the nearest 100,1 round to 700

To 20 , it could be
15 to 24
To 10, it could be 5 to 14

To 700, it could be 650 to 749

Use each digit once: $5,24,679$ or 9, 17, 653 etc.

Arithmetic questions

ANSWERS			
Multiplication Written Methods			
1.) 26,184	Back to Basics		
2.) 34,812	6.)	264	
3.) 864	7.)	12,096	
4.) 2,485	8.)	2,562	

Year 5 | Autumn term | Block 1 - Place value | Step 13

T- Round within 100,000
L-To round within 100,000

1) Label the number line.

2) Estimate the position of 63,812 on the number line.
3) $60,000 \quad 70,000$

90,000
100,000
4) Round 7,443 to the nearest 1,000

7,000

L- To round within 100,000
Hook

Stadium	Capacity
Old Trafford in Manchester	75731
Millenium Stadium in Cardiff	74500
St James' Park in Newcastle upon Tyne	52404
St Andrew's in Birmingham	30009
Macron Stadium in Bolton	28723
Ageas Bowl in Hampshire	25000
Windsor Park in Belfast	20000

How did the journalist arrive at the number 76 000?

Key Questions:
Why do you think the journalist chose 76000 when the capacity is only 75 731?

Is there a special way in which we can round numbers?

Can you use a number line?
Can you use a bar graph?

Round to nearest $10 \longrightarrow$ Ones column
Round to nearest $100 \longrightarrow$ Tens column
Round to nearest 1,000 \longrightarrow Hundreds column
Round to nearest $10,000 \longrightarrow \underline{\text { Thousands column }}$

The previous multiple of 10,000 is 80,000
The next multiple of 10,000 is 90,000
84,000 is closer to 80,000 than 90,000
84,000 rounded to the nearest 10,000 is 80,000

The previous multiple of 10,000 is 60,000
The next multiple of 10,000 is 70,000
\qquad is closer to 70,000 than

65,124 rounded to the nearest 10,000 is 70,000

Round 84,000 to the nearest $10,00080,000$
Round 65,124 to the nearest $10,000 \quad 70,000$

Let's Learn Round 45,000 to the nearest 10,000

50,000

Round 42,989 to the nearest 10,000

40,000

Round 3,606 to the nearest 10,000
00,(100

Let's Have a go:

Round 85,617

To the nearest 10 To the nearest 100

- To the nearest 1,000
- To the nearest 10,000

Key Questions:
Is there more
than one
solution?
Will the answers
to the nearest 100
and l, OOO be the
same or
different for the
different start
numbers?

Key Questions:
Is there more
than one
solution?
Will the answers
to the nearest 100
and 1,000 be the
same or
different for the
different start
numbers?

To round within 100,000
 Independent Practice:

Round the distances to the nearest 1,000 miles.

Destination	Miles from Manchester airport	Miles to the nearest 1,000
New York	3,334	
Sydney	10,562	
Hong Kong	5,979	
New Zealand	11,550	

Complete the table.

Rounded to the nearest 100	Start Number	Rounded to the nearest 1,000
	15,999	
	28,632	
	55,555	

Mo rounds a number to the nearest 1,000

a) Write three numbers Mo could have started with. Use the number line to help you.
b) What is the smallest number Mo could have started with?
c) What is the greatest number Mo could have started with?

If you finish:

Both numbers round to 60,000

Other examples:

19,721 to the
nearest 1,000 and 10,000

697 to the nearest 10 and 100

22,982 to the nearest 100 and 1,000

Axithmetic questions

ANSWERS			
Multiplication Written Methods			
1.) 27,006	Back to Basics		
2.) 1,161	5.)	413	
3.) 44,856	7.)	9,966	
4.) 16,443	8.)	3,088	

Year 5 | Autumn term | Block 1 - Place value | Step 14
T- Round within 1,000,000

L-To round any number up to $1,000,000$

1) Label the number line. 610,000 630,000 650,000 670,000 690,000 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | \mid | |
| 6600,000 | 680,000 | 700,000 | | | | | | | |
2) Estimate the position of 619,000 on the number line.
3) $370,000380,0003 \underline{990,000} 4 \underline{00,000} 4 \underline{10,000}$
4) Round $4 \underline{5}, 943$ to the nearest $10,000 \quad 50,000$

My number is
800,000 when rounded to
the nearest 100,000

What is the greatest integer Amir could be thinking of?
What is the smallest integer Amir could be thinking of?

Key Questions:
What place value column should you look at to round the number to the nearest 100,000 ?
My friend says that the ones column digit must be zero. Is this true?
Mr friend says he would use a number line to solve this. How would that help?

Place 268,000 on the number lines.

Let's Learn:

My number is 500,000 when I round it to the nearest 100,000

What is the smallest number Tommy could be thinking of? 450,000
$450,000470,000490,000510,000 \quad 530,000 \quad 549,900$

L-To round any number up to $1,000,000$.

Let's Have a go:

Populations of Some Small Countries

Do the same for the other countries.

Independent Practice:

Round these populations to the nearest 100,000

City	Population	Rounded to the nearest 100,000
Leeds	720,492	
Durham	87,559	
Sheffield	512,827	
Birmingham	992,000	

Round 450,985 to the nearest

- 10
- 100
- 1,000
- 10,000
- 100,000
(2)

Round the numbers to the correct values.
a)

432,442
to the nearest 10 is \square
to the nearest 100 is \square
b)
 to the nearest 100 is \square
to the nearest 1,000 is \square to the nearest 1,000 is \square to the nearest 10,000 is \square to the nearest 10,000 is \square to the nearest 100,000 is \square

Tiles are sold in boxes of 10
a) Teddy's uncle needs 84 tiles.

[^1]To round any number up to $1,000,000$.
If you finish:

At a festival, 218,712 people attend across the weekend. Tickets come in batches of 100,000
How many batches should the organisers buy?

Place value

Name
1
What number is represented below?

Th	Th	H	T	O
∞		100		
∞		100		

Teddy says that the number is multiple of 5 Is Teddy correct? Explain your answer.

2 Complete the missing numbers.

$$
\begin{aligned}
& 92,046=90,000+\ldots+40+6 \\
& =40,000+3000+10+9 \\
& 50,000+1,000+\ldots=52,080
\end{aligned}
$$

3 In a game, people have some play money to buy houses.
Each person starts with the following play money.

How much money does each person start with?

$$
£
$$

4 Circle all the numbers that round to 8,500 to the nearest 100

8,458	548	8,548	8,488	8,558

5 Complete the bar model.

603,090		
600,000		90

6 Tick the greater number. Explain your choice.

$$
\begin{aligned}
& \text { CXIX } \\
& \text { CXX }
\end{aligned}
$$

7
What numbers are shown by the arrows?

8 Complete the statements using $<,>$ or $=$

9) Arrange the digit cards to make an even number between 80,000 and 100,000

Round your number to the nearest 1,000

Round your number to the nearest 10,000

10
Complete the missing number.

22		100,022	150,022

11 Put the weights is order starting with the smallest.

$\overline{\text { smallest }}$ \qquad
\qquad

(12) Eva makes a 5-digit number.

- The thousands digit is a 1
- There are no tens or ones.
- The hundreds digit is 1 more than the ten thousands digit.
- The sum of all the digits is 10

What is 10,000 more than Eva's number?

[^0]: a) 2,041
 b) 1,204
 c) 4,012

[^1]: Explain why Teddy is wrong

